Retinoic acid controls the homeostasis of pre-cDC–derived splenic and intestinal dendritic cells

نویسندگان

  • Christopher A. Klebanoff
  • Sean P. Spencer
  • Parizad Torabi-Parizi
  • John R. Grainger
  • Rahul Roychoudhuri
  • Yun Ji
  • Madhusudhanan Sukumar
  • Pawel Muranski
  • Christopher D. Scott
  • Jason A. Hall
  • Gabriela A. Ferreyra
  • Anthony J. Leonardi
  • Zachary A. Borman
  • Jinshan Wang
  • Douglas C. Palmer
  • Christoph Wilhelm
  • Rongman Cai
  • Junfeng Sun
  • Joseph L. Napoli
  • Robert L. Danner
  • Luca Gattinoni
  • Yasmine Belkaid
  • Nicholas P. Restifo
چکیده

Dendritic cells (DCs) comprise distinct populations with specialized immune-regulatory functions. However, the environmental factors that determine the differentiation of these subsets remain poorly defined. Here, we report that retinoic acid (RA), a vitamin A derivative, controls the homeostasis of pre-DC (precursor of DC)-derived splenic CD11b(+)CD8α(-)Esam(high) DCs and the developmentally related CD11b(+)CD103(+) subset within the gut. Whereas mice deprived of RA signaling significantly lost both of these populations, neither pre-DC-derived CD11b(-)CD8α(+) and CD11b(-)CD103(+) nor monocyte-derived CD11b(+)CD8α(-)Esam(low) or CD11b(+)CD103(-) DC populations were deficient. In fate-tracking experiments, transfer of pre-DCs into RA-supplemented hosts resulted in near complete conversion of these cells into the CD11b(+)CD8α(-) subset, whereas transfer into vitamin A-deficient (VAD) hosts caused diversion to the CD11b(-)CD8α(+) lineage. As vitamin A is an essential nutrient, we evaluated retinoid levels in mice and humans after radiation-induced mucosal injury and found this conditioning led to an acute VAD state. Consequently, radiation led to a selective loss of both RA-dependent DC subsets and impaired class II-restricted auto and antitumor immunity that could be rescued by supplemental RA. These findings establish a critical role for RA in regulating the homeostasis of pre-DC-derived DC subsets and have implications for the management of patients with immune deficiencies resulting from malnutrition and irradiation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generation and transcriptional programming of intestinal dendritic cells: Essential role of retinoic acid

The vitamin A metabolite retinoic acid (RA) regulates adaptive immunity in the intestines, with well-characterized effects on IgA responses, Treg induction, and gut trafficking of T- and B-effector cells. It also controls the generation of conventional dendritic cell (cDC) precursors in the bone marrow and regulates cDC subset representation, but its roles in the specialization of intestinal cD...

متن کامل

Regulation of Toll-like Receptor 5 Gene Expression and Function on Mucosal Dendritic Cells

Toll-like receptor (TLR) 5 has been shown to maintain intestinal homeostasis and regulate host defense against enterobacterial infection. However, how TLR5 expression is regulated and its function in the intestine have not been fully elucidated. Here we demonstrate that mucosal dendritic cells (DCs), but not splenic DCs, express high levels of TLR5 protein. Alternatively spliced Tlr5 transcript...

متن کامل

Retinoic acid-primed human dendritic cells inhibit Th9 cells and induce Th1/Th17 cell differentiation.

All-trans-retinoic acid plays a central role in mucosal immunity, where it promotes its synthesis by up-regulating CD103 expression on dendritic cells, induces gut tropic (α4β7(+) and CCR9(+)) T cells, and inhibits Th1/Th17 differentiation. Recently, murine studies have highlighted the proinflammatory role of retinoic acid in maintaining inflammation under a variety of pathologic conditions. Ho...

متن کامل

The effect of Fibroblast Growth Factor-2(FGF-2) and retinoic acid on differentiation of mouse embryonic stem cells into neural cells

Introduction: Embryonic Stem (ES) cells as pluripotent cells derived from the inner cell mass of blastula can differentiate to neural cells in vitro and this property is valuable in studies of neurogenesis and in the generation of donor cells for transplantation. In this regard, the propose of this research, was the study of the role of two important factors in the development of neural syst...

متن کامل

A New Two Step Induction Protocol for Neural Differentiation of Human Umbilical Cord Blood-Derived Mesenchymal Stem Cells

Background: In this study, we examined a new two step induction protocol for improving the differentiation of human umbilical cord blood-derived mesenchymal stem cells into neural progenitor cells. Materials and Methods: Human umbilical cord blood-derived mesenchymal stem cells were first cultured in Dulbecco’s modified eagle medium supplemented with 10% fetal bovine serum in a humidified incu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 210  شماره 

صفحات  -

تاریخ انتشار 2013